

Economic Computation and Economic Cybernetics Studies and Research, Issue 2/2019; Vol. 53

289

DOI: 10.24818/18423264/53.2.19.17

Lecturer Sajjad AGHAREZAEI, MSc

E-mail: Sajjadagharezaee1993@gmail.com

“Qom” University of Technology

Lecturer Mehdi FALAMARZI, MSc

E-mail: Mehdi.falamarzi1371@gmail.com

“Qom” University of Technology

PARTICLE SWARM OPTIMIZATION ALGORITHM FOR THE

PREPACK OPTIMIZATION PROBLEM

Abstract. Packing problem is one of the most well-known problems in
inventory control situations. There are some methods for solving such problems one of

which is the meta-heuristic algorithm. The PSO method is a procedure that solves

problems with a heuristic procedure. In this study, some realistic assumptions are

considered and each particle has its speed. Then, these particles transfer in the
solution space, and after every iteration, fitness function for each particle is

calculated. We intend to solve the packaging problem by using PSO in this

investigation. It is considered that the operable cost in this problem is considerable. In
this case, we have the instance of the warehouse that should manage a wide range of

various shops, requiring a given group of items. Consequently, this paper is solved a

Mixed-integer linear programming problem for the pre-pack optimization problem and

results shows the presented method could reduce the optimal amount in reasonable
time effort.

Keywords: particle swarm optimization, algorithm, packing problems,

Prepack optimization, meta-heuristics.

JEL Classification: C61

1. Introduction

Nowadays, packing problems have a valuable effect on industrial environments and

many researchers have investigated this problem since 1960. In the mentioned

problem, the number of items should be packed and consequently are sent to each
shop. As can be predicted, there are some constraints and objectives that have to be

noticed. Most of the research that has taken to account for this problem, have

considered the minimum number of bins as an objective function (Fischetti et. al.,
2015) studied the packing problem with transportation time for the first time (Fischetti

et. al., 2015). The subsequent problem is called the Bin Packing Problem, which has

Sajjad Agharezaei, Mehdi Falamarzi

290

DOI: 10.24818/18423264/53.2.19.17

been generally considered in the literature, both in its one-dimensional version

(Martello et al., 1990) and in its higher-dimensional (variants et. al., 2002).
In logistic applications some sort of packing problems with various realistic

consumption exist (Iori et. al., 2007) one of the most well-known problems is where

some customers should be supplied with one supplier, whereas (Monaci, 2004;Correia

et. al., 2008).addressed the problem in which different kinds of bins are obtainable and
their costs are absolutely different. In this study, we have considered a specific packing

problem, where the required cost of packing items is considerable, or even higher than

items price (Fischetti et. al., 2015). In this regard, the warehouse must arrange each
customer’s requirements (e.g., stores), each demanding a specified set of products

(Fischetti et. al., 2015). In this research, an automatic packing system is utilized and

products are sent automatically to each customer. For better control on systems costs,
the number of pre-defined configurations is designed (Fischetti et. al., 2015).

2. Background and related work

Creating pre-defined configurations for packing items has some advantages some of

which are easy transportation and the minimum number of transferred products, but as
can be predicted, this limitation can reduce flexibility in the supply chain and in some

situations it would be possible that customers’ requirements are not satisfied properly

(Fischetti et. al., 2015). In order to modify Particle swarm optimization efficiency,
numerous PSO alternatives were prepared in literature. These methods contain (Chen

et. al., 2013): 1- setting optimal parameters, which can achieve best values in the

minimum computational effort, 2- constructing innovative neighborhood solution, 3-

crossing PSO with lower search methods, and 4- using multi-swarm methods. An
entire analysis on the PSO algorithm was newly proposed by Banks et al. (Banks et.

al., 2007; Banks et. al., 2008).A lot of procedure is suggested to develop the Particle

swarm optimization presentation. Mentioned methods can be elaborated as follow: (i)
learning plans, (ii) multi-swarm arrangements, (iii) neighborhood topologies, (iv)

combinations with other swarm intellects (SI) procedures, and (v) parameter setting.

2.1 The first particle swarm algorithm

In 1995, Eberhart and Kennedy first developed an algorithm for particle swarm

optimization as an uncertain search method for practical optimization. This algorithm

is stimulated by the movement of birds looking for food. Numbers of birds in this

procedure are searching foods in the search space. There is one portion of food in the
search space. Each solution that called a particle in the algorithm is alike to a bird in

the bird movement procedure. Consequently, each particle has a fitness value

calculated by a fitness function. Particles that are near to foods have more fitness
values. In this algorithm, each particle has its speed too. By continuing to look for

optimal particles in the search space, the particle continues to near itself to the best

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

291

DOI: 10.24818/18423264/53.2.19.17

values. In this way, the collection of particles at the start of the process is created

accidentally and by upgrading the generations, they try to find an optimal solution.

In PSO algorithm there is two best value. First, one is the best fitness value which is
found so far and is called pbest. The second one that is presented by gbest is the best

solution which is found by the population. Finally, the speed and location of the

particle are calculated with the following equations.

1 2(1) () * ()*(() ()) * ()*(() ())best bestv t v t C rand t p t position t C rand t g t position t     

 (1)

(1) () (1)position t position t v t   
 (2)

The right side of equation (1) contains three portions: the first portion is the existing
speed of the particle and the second part and third is the rate of change in the speed of

the particle and its direction towards the best value. If we do not consider the first part

in this equation, then the speed of the particles is determined only with respect to the
current position. Therefore, the effect of its current and randomly speed is eliminated.

In this means, the best part of the group stops in place and the others transfer towards

that particle. In fact, group transfer of birds without the first part of Equation (1) will

be a procedure in which the search space reduces and searches are formed around the
local solution.

On the other hand, if the first part of the equation is considered, searching in global

space can be occurred. The parameter is given by whether or not to set parameters and
to zero in three different following modes:

 1- We do not set any of these two parameters to zero, which is an algorithm for

particles swarm optimization with speed inertia, collective intelligence and nostalgia.
2- Zero the weight of nostalgia and we only act based on collective intelligence and

inertia.

3- Zero the weight of collective intelligence and act only based on nostalgia and

inertia.

We initialize it by the equation (3). The initial speed is zero according to equation(4).

)3()()0(minmaxmin xxrandxx 

)4(0)0(v

2.1.1 The basic problem of the first particles swarm algorithm

A fundamental problem with the proposed formula for the initial particles swarm
algorithm is that it constantly increases and no program is presented to reduce it. If it is

necessary, we need to slow down as quickly as possible, so that our particle doesn’t

Sajjad Agharezaei, Mehdi Falamarzi

292

DOI: 10.24818/18423264/53.2.19.17

pass through the global optimum. To do this, there are a few solutions that we'll cover

two of them.

1- Using the maximum cutting speed

In this method, in order to avoid over-speeding, a maximum speed is defined so even

the speed exceeded, it can be cut.

)5(
)1(

)1()1(
)1(

maxmax

max'










vtvv

vtvtv
tv

2- Using the maximum speed of the hyperbolic tangent

In this method, a hyperbolic tangent function is used to limit the speed to a specific
value. The difference between this mode and the cutting mode is that in this case, our

function is differentiable in all directions, while in the cutting case the derivative is

destroyed.

)6()()
)1(

tanh()1(max

max

' tv
v

tv
tv

j

j

ij

ij




In cutting point of cutting mode, the derivative disappears, but in the hyperbolic

tangent mode, there is no problem.

 2.2 Types of Swarm Particle Algorithms

 2.2.1 Continuous Particle Swarm Algorithm

Particle swarm optimization algorithm is a population-based algorithm that is

stimulated birds movement for finding foods and firstly starts with initial solutions and

gradually try to improve final results. In the particle swarm optimization algorithm,

particles are flowing in the search space. The particle movement during their process
finds a new generation according to solutions which are found in previous steps. The

outcome of the modeling of this behavior is a search procedure that directs population

toward successful solutions. Particles learn from each other and according to previous
findings, go to their best solutions. The basis of the work of the particle swarm

optimization algorithm is based on the attitude that at any specific second, each

particle sets its position according to the best position ever found to be taken place in it
and the best place exists in the whole neighborhood. In the following, we will briefly

explain the concept of collective intelligence.

2.2.2 Collective Intelligence

Collective intelligence is a methodical property that the agents collaborate, and the

collective performance of all particles leads to a convergence at the optimal global

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

293

DOI: 10.24818/18423264/53.2.19.17

answer. The strength of these algorithms is the lack of their need for a global control.

Each particle in these procedures has an independence that can move across the space
of the answers and should cooperate with other particles (agents). Two popular

intelligence procedures are optimization of ants’ nest and particle mass optimization.

3. Methodology

 3.1. Steps to perform particle swarm optimization

Sometimes there are differences in the way the algorithm is separated. In other words,

the steps are separated in some cases, and in some cases, they combine two or more

steps together into one step, but this does not cause any problems in the programming,
because what matters is the execution of the program steps in the order that follows.

For example, in some references, steps 4 and 5 are combined; therefore, the update

phase of particle speed and the transfer of particles to new locations considered as a
stage. This change will not cause a problem in the implementation of the algorithm. In

the following, we will study 6 steps of PSO:

Step 1: Random generation of initial particles population

Random generation of the initial population is simply a random determination of the
initial site of particles with uniform distribution in the solution space (search space).

The random generation step of the initial population exists in almost all probabilistic

optimization algorithms, but in this algorithm, in addition to the initial random location
of particles, a value is also allocated for the initial speed of particles. The initially

suggested range for particles speed can be extracted from the following equation (7).

)7(
22

minmaxmaxmin XX
V

XX 




Step 2: Selecting the number of initial particles

We know that growing the number of initial particles reduces the number of repetitions

needed to converge the algorithm, but sometimes it is observed that users of
optimization algorithms assume that this reduction in the number of repetitions means

reducing the program execution time to achieve convergence, while such an idea is

completely wrong. However, a growth in the number of initial particles leads to a
reduction in the number of repetitions, But the growth in the number of particles

causes the procedure to spend more time in the particle evaluation stage, which

increases the time of the evaluation so that the algorithm's execution time does not
decrease until the convergence progresses despite a reduction in the number of

repetitions. So growing the number of particles cannot be used to reduce the runtime of

the algorithm.

Sajjad Agharezaei, Mehdi Falamarzi

294

DOI: 10.24818/18423264/53.2.19.17

There is another misconception that the number of particles can be reduced to reduce

the runtime of the algorithm. But to get the algorithm to the optimal answer, the
number of repetitions increases. (If we consider the convergence condition to be

unchanged at the expense of the best member in several successive repetitions), which

ultimately does not reduce the runtime of the program to achieve the optimal response.

It should also be noted that the reduction in the number of particles may be trapped in
the local minimum, and the algorithm can’t reach to the minimum. If we consider the

convergence condition as the number of repetitions, however, reducing the number of

initial particles, the algorithm will be reduced, but the answer obtained will not be an
optimal solution to the problem. Because the algorithm is incompletely implemented.

In summary, the number of primary population is determined by the problem. In

general, the number of initial particles is a compromise between the parameters
involved in the problem. Experimentally selecting an initial particles population of 20

to 30 particles is a good choice, which works well for almost all testing issues. You

can count the number of particles a bit more than you need to have a little margin of

safety when facing local minimum.

Step 3: Evaluating the objective function (cost or expense calculation) of particles

At this step, we must evaluate each particle, which represents a solution to the problem
under consideration. Depending on the issue under consideration, the evaluation

method will be different. For example, if it is possible to define a mathematical

function for a target, by inserting the input parameters (extracted from the particle
position vector) in this mathematical function, the cost of this particle will easily be

calculated. Note that each particle contains comprehensive data about the input

parameters of the problem, which is extracted from this information and puts in the

target function. Sometimes it is not possible to define a mathematical function for
particles evaluation. This occurs when we link the algorithm to another software or use

the algorithm for experimental data. In these cases, information about the input

parameters of the software or the test should be extracted from the particle position
vector and placed on the software linked to the algorithm or placed on the relevant test.

By executing the software or doing the test, observing and measuring the results, the

cost of each particle will be determined.

Step 4: Recording the best location for each particle (bestiP ,) and the best location

among all the particles (bestgP ,)

At this step, according to the number of repetitions, two states can be verified:

If we are in the first repetition (1t), consider the present position of each particle as

the best location found for that particle.

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

295

DOI: 10.24818/18423264/53.2.19.17

)8(
))((cos)(cos

,...,3,2,1)(
1

,

,










tXtPt

ditXP
t

jbesti

ibesti

In other repetitions, we compare the amount of cost for particles in step 2 with the best
cost for every single particle. If this cost is less than the best cost recorded for this

particle, then the location and cost of this particle will replace the previous value.

Otherwise, there will be no change in the place and cost recorded for this particle, i.e.:

)9(,...,2,1
)(

))((cos)(cos)(cos))((cos
2

,

,,













 

 di
tXP

tXtPt

notchangeelse

PttXtif
t

ibesti

jbestibestii

Step 5: Updating the speed vector of all the particles

)10())1(())1(()1()(,22,11  tXPrandctXPrandctVwtV ibestgibestiii

The coefficients w ,
1c and

2c are determined experimentally according to the problem.

But as a general rule, keep in mind that w must be less than one, because if it is larger

than one,)(tV is constantly increasing to the point where it is divergent. Note also,

however in the theory, the coefficient w , can be negative, but never consider these

coefficients to be negative in using of this practical algorithm, since the negativity of w

causes oscillation in)(tV . Selecting a small value for this coefficient)(w also has

problems. Often, in the particles swarm optimization algorithm, this coefficient is

positive and ranges from 0.7 to 0.8. The
1c and

2c should also not be too large, since

the selection of large values for these two factors causes a large deviation of the

particles from its path. Often, in the particles swarm optimization algorithm, these

coefficients are positive and range from 1.5 to 1.7. It should be noted that the above

values are not necessarily the only possible choices for the coefficients w ,
1c ,

2c but

according to the problem under consideration, there may be better choices other than

the above.

Step 6: Convergence test
The convergence test in this algorithm is similar to other optimization algorithms.

There are various methods for examining the algorithm. For example, it is possible to

determine the exact number of repetitions from the beginning, and at each step, it is
checked whether the number of repetitions reached the specified value? If the number

of repetitions is smaller than the initial value, then you must go back to step 2.

Otherwise, the algorithm ends. Another method that is often used in the convergence
test of the algorithm is that if, in continued repetitions, for example, 15 or 20

repetitions, no change in the cost of the best particle is created, then the algorithm

Sajjad Agharezaei, Mehdi Falamarzi

296

DOI: 10.24818/18423264/53.2.19.17

ends, otherwise you need to return to step 2. The circular diagram (flowchart) of

particles swarm optimization algorithm is shown in Figure1.

1. Circulating diagram of particle swarm optimization algorithmFigure

The pseudo code of the particle swarm optimization algorithm is as follow.

Random generation of initial particles population

Objective function evaluation (calculating the cost or fitness of

particles)

Recording the best position for each particle (𝑃𝑖.𝑏𝑒𝑠𝑡) and best position

between all the particles (𝑃𝑔.𝑏𝑒𝑠𝑡)

Updating the speed vector of all the particles

Transferring the particles to new positions

Convergence

test

 End

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

297

DOI: 10.24818/18423264/53.2.19.17

Algorithm 1. Pseudo code

1: For each particle
2: Initialize particle
3: End For
4: Do
5: For each particle
6: Calculate fitness value of the particle fp
7: /*updating particle’s best fitness value so far) */

8: If fp is better than pBest
9: set current value as the new pBest
10: End For
11: /*updating population’s best fitness value so far) */
12: Set gBest to the best fitness value of all particles
13: For each particle
14: Calculate particle velocity according equation
15: Update particle position according equation
16: End For While maximum iterations OR minimum error criteria is not attained

But in the case of the stopping condition, the following ways are available.

a. Number of determined repetitions.
b. Reaching a threshold merit.

c. A number of repetitions that do not change the merit (for example, if after 10

repetitions the merit was constant and not better).

d. The last one is based on the aggregate density around the optimal point. In this
way, if the 80 percent of the particles be in a distance less than 20 percent of most

distance of the best solution, the algorithm should be stopped.

e. In the last method𝑅𝑛𝑜𝑟𝑚can be obtained in accordance with equation (11). As

stated, 𝑅𝑛𝑜𝑟𝑚 is a value between 0 and 1, and also F is the greatest distance

between two particles in the current state.

)11()(max

F

R
Rnorm 

 3.2 Mathematical and suggested algorithm

In this segment, using the data obtained from the problem; we codified the algorithms
affecting particles swarm and reported it in the form of a table.

In the research that Fischetti et al. did in 2015 to solve the packaging problem caused

by mixed-integer linear programming (Fischetti et. al., 2015), they provided the data in
the table1 and determined the experimental variables.

Sajjad Agharezaei, Mehdi Falamarzi

298

DOI: 10.24818/18423264/53.2.19.17

Table 1. Performance of a black box MILP solver on the instances from (Hoskins

et. al., 2014). Single run for each instance. Times in CPU seconds (time limit of

3600 s) (Fischetti et. al., 2015)

The sample variables of this test are: Black58, Red58, Green58, Blue58, BlackBlue10,
BlackBlue58, AllColor10, AllColor58, and the initial time and limitations of each

variable, are also calculated in Table1. However, Finally, Fischetti et al. (2015)

compared the variablesBlackBlue10, BlackBlue58, Allcolor10, and Allcolor58 in

terms of the value of the target function and the best time by using four heuristic
methods like fast heuristic, random, most similar, and most dissimilar heuristic as

shown in the Table2.

Table2.Average performance (out of 100 runs) of our heuristics (Fischetti et. al.,

2015)

Instance Heuristic Time (s) time best (s) Pint Opt

BlackBlue10 fast heu 1.08 1.08 0.34 100

 Random 1.44 1.44 0.27 100

 most dissimilar 1.26 1.26 0.25 100

 most similar 1.25 1.25 0.29 100

BlackBlue58 fast heu 4.61 4.61 9.88 100

 Random 6.40 6.40 10.11 100

 most dissimilar 2.76 2.76 9.13 100

Instance Time (s) Primal bound Final gap

Black58 5.4 58 0.0%

Red58 5.1 160 0.0%

Green58 1.0 0 0.0%

Blue58 6.4 0 0.0%

BlackBlue10 352.7 10 0.0%

BlackBlue58 3600.0 583 90.2%

AllColor10 3600.0 407 98.8%

AllColor58 3600.0 6981 99.4%

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

299

DOI: 10.24818/18423264/53.2.19.17

 most similar 5.62 5.62 15.42 100

AllColor10 fast heu 71.82 71.82 3.81 100

 Random 600.29 304.06 18.63 36

 most dissimilar 704.33 241.12 19.69 27

 most similar 626.15 302.40 20.54 26

AllColor58 fast heu 900.00 332.43 328.20 0

 Random 874.87 329.59 562.95 2

 most dissimilar 893.48 323.93 545.47 1

 most similar 859.86 287.50 404.29 1

We now consider the method of particles swarm optimization for this study. In this

segment, we need to implement the execution stepsof the particles swarm optimization
algorithm for this research. In the first step, which is called the randomized generation

of the initial particles population, we must code the initialization to create the

population. Algorithm 2 indicates initialization.

Algorithm 2. Initialization

1: function [InSol] = initialization (B , S , nPop , K)

2: InSol = zeros (B , S , nPop) ;

3: for =1: nPop

4: k = K ;

5: I = zeros (B , S) ;

6: SUM = zeros (B ,1) ;

7: for I =1: B

8: for j =1: S

9: I(I , j) = randi ([0 , k(i)]) ;

10: k(i) = k(i) - I(i , j) ;

11: end

12: end

13: for i = 1: B

14: SUM (i) = sum (I(i , :)) ;

15: end

Sajjad Agharezaei, Mehdi Falamarzi

300

DOI: 10.24818/18423264/53.2.19.17

16: for i=1: B

17: if SUM (i) < K(i)

18: t = K(i) - SUM (i) ;

19: t1= find(I(i,:) = = min (I(i , :))) ;

20: I (i , t1(1)) = t + I (i , t1 (1)) ;

21: end

22: end

23: InSol (: , : , z) = I(: , :) ;

24: end

25: end

In the next step, we need to allocate some value for the initial velocity of particles,

which we have specified in Algorithm 3.

Algorithm 3. Speed

1: function V=speed(c1, c2, pbest, gbest, InSol)

2: V=(c1* rand *(pbest - InSol.fitness) + c2 * rand * (gbest - InSol.fitness));

3: end

In the step 3, we must evaluate and record each particle representing a solution to the

problem under consideration, which we have identified in Algorithm 4.

Algorithm 4. Recording

1: function [pbest, gbest]=recording(InSol,nPop)

2: pbest=zeros(1, 1, nPop);

3: for z=1:nPop

4: pbest (z)=InSol.fitness (:, :, z);

5: end

6: gbest =min(InSol.fitness);

7: end

In the step 4, we need to determine the best location for each particle and the best

location among all the population, which we have specified in Algorithm 5.

Algorithm 5. Position

1: function [P]=position(alfa, beta, InSol, r, S, nPop)

2: O=zeros(1, S, nPop);

3: U=zeros(1, S, nPop);

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

301

DOI: 10.24818/18423264/53.2.19.17

4: SUM=zeros(1, S, nPop);

5: for j=1: S

6: SUM=sum(InSol.value);

7: end

8: for z =1: nPop

9: for j=1: S

10: if SUM(:, j, z)==r(j)

11: continue

12: else if SUM(:, j, z) > r(j)

13: O(:, j, z)=SUM(:, j, z) - r(j);

14: else

15: U(:, j, z)=r(j) - SUM(:, j, z);

16: end

17: end

18: end

19: t1= alfa * U;

20: t2= beta * O;

21: P =sum(t1+t2);

22: end

In step 5, we need to update the velocity vector of all particles, which we did in

Algorithm 6.

Algorithm 6. Updating

1 function bestsol = updating(InSol, nPop, bestsol)

2 for z =1: nPop

3 if InSol . Fitness <bestsol .fitness

4 bestsol(: , : , z) = InSol(: , : , z);

5 end

6 end

Sajjad Agharezaei, Mehdi Falamarzi

302

DOI: 10.24818/18423264/53.2.19.17

In the final step, we implement the convergence test and the general scheme of

particles swarm optimization algorithm shown in Algorithm 7.

Algorithm 7. PSO algorithm

1: clc;

2: clear;

3: %% PSO algorithm

4: %% problem parameters

5: alfa =1;

6: beta =1;

7: r =[10, 10, 10];

8: K =[8; 8; 8];

9: S =3;

10: B =3;

11: %% algorithm parameters

12: nPop =100;

13: c1=2;

14: c2 =2;

15: MNI =2000;

16: %% algorithm main loop

17: bestsol.value = zeros(B, S);

18: bestsol.fitness =1000 * ones(1, 1, nPop);

19: bestsol.V =zeros (1, 1, nPop);

20: bestsolstage =zeros (MNI, 1);

21: for m =1: MNI

22: % initialize random solution

23: InSol.value = zeros(B, S);

24: InSol.fitness =zeros (1, 1, nPop);

25: InSol.V = zeros(1, 1, nPop);

26: InSol.value = initialization(B, S, nPop, K);

27: % calculating particles positions(costs)

28: InSol.fitness = pisition(alfa, beta, InSol, r, S, nPop);

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

303

DOI: 10.24818/18423264/53.2.19.17

29: % recording current and best position for population

30: [pbest , gbest]= recording(InSol, nPop);

31: % calculating current speed and position for every particles

32: InSol.V = speed (c1 ,c2 ,pbest, gbest, InSol);

33: InSol.fitness = InSol.fitness + InSol.V;

34: %updating best solution which is found so far

35: bestsol = updating (InSol, nPop, bestsol);

36: %showing algorithm convergence

37: MIN = min(bestsol.fitness);

38: bestsolstage (m)=MIN;

39: End

40: plot(bestsolstage)

In Table 3, the outcomes of the particles swarm optimization algorithm are calculated

in terms of the value of the target function and runtime in the reference article.

 Table3.Results of Particle Swarm Optimization Algorithms

Instance Heuristic Time (s) Time best (s) Opt

BlackBlue10 PSO 1.68 1.68 100

BlackBlue58 PSO 5.22 5.22 100

Allcolor10 PSO 405.33 405.33 20

Allcolor58 PSO 844 844 1

4. Result and discussion

The simulated behavior of birds ‘population, which is known as particle swarm

optimization (PSO), was proposed in (Eberhart and Shi, 2001). In opposite of other
population-based evolutionary algorithms, Particle Swarm Optimization researches the

search space according to 2 key “leaders”: 𝑝𝑏𝑒𝑠𝑡 and𝑔𝑏𝑒𝑠𝑡 , which are the prior best

postures achieved by the individual particle and the swarm so far, individually. As the

Particle Swarm Optimization researches algorithm is simplified in conception,
prosperous to utilize and computationally cheap, it attracts the attention of many

investigators in recent years. PSO has now been effectively utilized to a varied range

Sajjad Agharezaei, Mehdi Falamarzi

304

DOI: 10.24818/18423264/53.2.19.17

of application areas (Agrawal and Bawane, 2015; Gonzalez et. al., 2015;Ishaque et. al.,

2012;Sa-ngawongand Ngamroo, 2015; Wang and Yang, 2013) engineering design(Jin
and Rahmat-Samii, 2010; Kachroudi et. al., 2012; Yeung et. al., 2012) neural networks

(Bevrani et. al., 2012; Georgeand Panda, 2012; Silva et. al., 2010; Valdez et. al., 2014;

Xiong et. al., 2015) and so on.

However, Particle Swarm Optimization researches has a quick rate of convergence and

worldwide search ability when searching in the unimodal problem space, it frequently
gets stuck and snare in local minima when applied to more complex problems such as

multimodal or shifted and rotated functions (Chen, 2012).In Table4, the results of the

particles swarm algorithm are compared with the algorithms examined in the reference

article in terms of the value of the target function and runtime.

Table4.Results of the algorithm of particle swarm with other methods

Instance Heuristic Time (s) Time best (t) Opt

BlackBlue10 Fast-heuristic 1.08 1.08 100

Random 1.44 1.44 100

Most-dissimilar 1.26 1.26 100

Most-similar 1.25 1.25 100

PSO 1.68 1.68 100

BlackBlue58 Fast-heuristic 4.61 4.61 100

Random 6.4 6.4 100

Most-dissimilar 2.76 2.76 100

Most-similar 5.62 5.62 100

PSO 5.22 5.22 100

Allcolor10 Fast-heuristic 71.82 71.82 100

Random 600.29 600.29 36

Most-dissimilar 704.33 704.33 27

Most-similar 626.15 626.15 26

PSO 405.33 405.33 20

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

305

DOI: 10.24818/18423264/53.2.19.17

Allcolor58 Fast-heuristic 900 900 0

Random 874.87 874.87 2

Most-dissimilar 893.48 893.48 1

Most-similar 859.86 859.86 1

PSO 844 844 1

Regarding the comparisons made in Table 4, it was observed that the method of

particles swarm optimization algorithm obtained better results than other four heuristic
methods in some variables. For example, in the Allcolor58 section, using particles

swarm optimization, the optimal time was 844 seconds, which is better than the other

four methods. Alternatively, in the Allcolor10 section, using particles swarm

optimization, the optimum time was 405.33, which is better than the other four
methods, and also by using particles swarm optimization method, obtained optimum

20 and was recognized as the best answer. So it can be concluded that the method of

particles swarm optimization is one of the most suitable and practicable methods for
minimization.

 5. Conclusion

In this paper, the method of particles swarm optimization algorithm was compared
with Fast Heuristic, Random, Most-dissimilar and Most-similar methods to solve the

packaging problem caused by inventory allocations. As shown in Table 4, in the

Allcolor58 section, the best optimum time was obtained using particle swarm method

and its time was estimated to be 844 seconds, which was found to be significantly
lower than other methods, and the optimal value was obtained using the Fast Heuristic

Method and its value was estimated to be 0. In Allcolor10, the best optimum time was

obtained using particles swarm method, and its time was estimated to be 405.33
seconds, which was significantly reduced compared to other methods, and the optimal

value was obtained by using the particles swarm method and its value was estimated to

be 20.
Considering the findings of this paper and also because the particles swarm

optimization algorithm is one of the most successful optimization algorithms due to its

simplicity and efficiency, the work of this research can be extended from other aspects.

Among other things, research and comparison of other parameters, such as the inertial
coefficient, acceleration coefficients, etc., can be obtained for the best possible

solution for the desired problem.

It can be concluded that the method of optimizing particles swarm is a useful method
for minimization problems.

Sajjad Agharezaei, Mehdi Falamarzi

306

DOI: 10.24818/18423264/53.2.19.17

REFERENCES

[1] Fischetti,M., Monaci, M.,Salvagnin, D. (2015), Mixed-integer Linear Programming

Heuristics for the Prepack Optimization Problem; Discrete Optimization, Pages 195-205;

[2] Martello, S., Toth, P., Knapsack (1990), Problems: Algorithms and Computer,

Implementations; John Wiley & Sons, Chichester;

[3] Lodi, A., Martello, S., Monaci, M. (2002), Two-dimensional Packing Problems: A

Survey; European;J. Oper. Res, 14, 241–252;

[4] Iori, M., Salazar-Gonzales, J., Vigo, D. (2007), An Exact Approach for the Vehicle

Routing Problem with Two-Dimensional Loading Constraints; Transp. Sci. 41, 253–264;

[5] Monaci, M. (2004), Algorithms for Packing and Scheduling Problems;4OR,85–87;

[6] Correia, I., Gouveia, L., Da Gama, F.S. (2008), Solving the Variable Size Bin-

Packing Problem with Discretized Formulations;Comput. Oper. Res, 35, 2103–2113;

[7] Chen, W.N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.H., Chung,H.S.H., and et al.

(2013), Particle Swarm Optimization with an Aging Leader and Challengers; IEEE
Transactions on Evolutionary Computation, 17, 241–258;

[8] Banks, A., Vincent, J., Anyakoha, C. (2007), A Review of Particle Swarm

Optimization. Parti: Background and Development; Nat Compute. 6, 467–84;

[9] Banks, A., Vincent, J., Anyakoha, C. (2008), A Review of Particle Swarm

Optimization. Part ii: Hybridization, Combinatorial, Multi Criteria and Constrained

Optimization, and Indicative Applications; Nat Compute, 7,109–24;

[10] Hoskins, M., Masson, R., Melanon, G., Mendoza, J., Meyer, C., Rousseau, L.M.

(2014), The Prepack Optimization Problem, in: H. Simonis (Ed.), Integration of AI and

OR Techniques in Constraint Programming; Lecture Notes in Computer Science, vol.

8451,pp. 136–143;

[11] Eberhart, R., Shi, Y. (2001), Particle Swarm Optimization: Developments,

Applications and Resources; Proceedings of IEEE Congress on Evolutionary

Computation, pp. 81–86;

[12] Agrawal, R.K., Bawane, N.G. (2015), Multi Objective PSO Based Adaption of

Neural Network Topology for Pixel Classification in Satellite Imagery; Appl. Soft

Compute. J. 28, 217–225;

[13] Gonzalez, M., López, A., Jurado, F. (2015), Corrigendum to Optimization of

Distributed Generation Systems Using a New Discrete PSO and OPF; Electric Power

Systems Research, Vol. 121, Page 379;

[14] Ishaque, K., Salam, Z., Amjad, M., Mekhilef, S. (2012), An Improved Particle

Swarm Optimization (PSO)-Based MPPT for PV with Reduced Steady-State Oscillation;

IEEE Trans. Power Electron, 27, 3627–3638;

[15] Sa-Ngawong, N., Ngamroo, I. (2015), Intelligent Photovoltaic Farms for Robust

Frequency Stabilization in Multi-Area Interconnected Power System Based on PSO-
Based Optimalsugeno Fuzzy Logic Control; Renew. Energy, 74, 555–567;

Particle Swarm Optimization Algorithm for the Prepack Optimization Problem

307

DOI: 10.24818/18423264/53.2.19.17

[16] Wang, J., Yang, F., (2013), Optimal Capacity Allocation of Standalone

Wind/Solar/Battery Hybrid Power System Based on Improved Particle Swarm

Optimization Algorithm; IET Renew. Power Generate,7, 443–448;

[17] Jin, N., Rahmat-Samii, Y. (2010), Hybrid Real-Binary Particle Swarm

Optimization (HPSO) In Engineering Electromagnetics; IEEE Trans. Ant. Prop. 58,

3786–3794;

[18] Kachroudi, S., Grossard, M., Abroug, N. (2012), Predictive Driving Guidance of

Full Electric Vehicles Using Particle Swarm Optimization; IEEE Trans. Vehicle
Technol., 61, 3909–3919;

[19] Yeung, S.H., Chan, W.S., Ng, K.T., Man, K.F. (2012), Computational

Optimization Algorithms for Antennas and RF/Microwave Circuit Designs: An

Overview; IEEE Trans. Ind. Inf, 8, 216–227;

[20] Bevrani, H., Habibi, F., Babahajyani, P., Watanabe, M., Mitani, Y. (2012),

Intelligent Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning
Approach; IEEE Trans. Smart Grid, 3, 1935–1944;

[21] George, N.V., Panda, G. (2012), A Particle-Swarm-Optimization-Based

Decentralized Nonlinear Active Noise Control System; IEEE Trans. Instrum. Meas, 61,

3378–3386;

[22] Silva, P.H., Cruz,R.M.S., Assuncao, A.G.D. (2010), Blending PSO and ANN for

Optimal Design of FSS Filters with Koch Island Patch Elements; IEEE Trans. Magn.,
46, 3010–3013;

[23] Valdez, F., Melin, P., Castillo, O. (2014), Modular Neural Networks Architecture

Optimization with a new Nature Inspired Method Using a Fuzzy Combination of
Particles Warm Optimization and Genetic Algorithms; Inf. Sci, 270, 143–153;

[24] Xiong, T., Bao, Y., Hu, Z., Chiong, R. (2015), Forecasting Interval Time Series

Using a Fully Complex-Valued RBF Neural Network with DPSO and PSO Algorithms;
Inf. Sci, 305, 77–92;

[25] Chen, P. (2012), Two-Level Hierarchical Approach to Unit Commitment Using

Expertsystem and Elite PSO; IEEE Trans.PowerSystem, 27, 780–789.

