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PARTICLE SWARM OPTIMIZATION ALGORITHM FOR THE 

PREPACK OPTIMIZATION PROBLEM 

Abstract. Packing problem is one of the most well-known problems in 
inventory control situations. There are some methods for solving such problems one of 

which is the meta-heuristic algorithm. The PSO method is a procedure that solves 

problems with a heuristic procedure. In this study, some realistic assumptions are 

considered and each particle has its speed. Then, these particles transfer in the 
solution space, and after every iteration, fitness function for each particle is 

calculated. We intend to solve the packaging problem by using PSO in this 

investigation. It is considered that the operable cost in this problem is considerable. In 
this case, we have the instance of the warehouse that should manage a wide range of 

various shops, requiring a given group of items. Consequently, this paper is solved a 

Mixed-integer linear programming problem for the pre-pack optimization problem and 

results shows the presented method could reduce the optimal amount in reasonable 
time effort. 

Keywords: particle swarm optimization, algorithm, packing problems, 

Prepack optimization, meta-heuristics. 
 

JEL Classification:  C61 

1. Introduction 

Nowadays, packing problems have a valuable effect on industrial environments and 

many researchers have investigated this problem since 1960. In the mentioned 

problem, the number of items should be packed and consequently are sent to each 
shop. As can be predicted, there are some constraints and objectives that have to be 

noticed. Most of the research that has taken to account for this problem, have 

considered the minimum number of bins as an objective function (Fischetti et. al., 
2015) studied the packing problem with transportation time for the first time (Fischetti 

et. al., 2015). The subsequent problem is called the Bin Packing Problem, which has 
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been generally considered in the literature, both in its one-dimensional version 

(Martello et al., 1990) and in its higher-dimensional (variants et. al., 2002). 
In logistic applications some sort of packing problems with various realistic 

consumption exist (Iori et. al., 2007) one of the most well-known problems is where 

some customers should be supplied with one supplier, whereas (Monaci, 2004;Correia 

et. al., 2008).addressed the problem in which different kinds of bins are obtainable and 
their costs are absolutely different. In this study, we have considered a specific packing 

problem, where the required cost of packing items is considerable, or even higher than 

items price (Fischetti et. al., 2015). In this regard, the warehouse must arrange each 
customer’s requirements (e.g., stores), each demanding a specified set of products 

(Fischetti et. al., 2015). In this research, an automatic packing system is utilized and 

products are sent automatically to each customer. For better control on systems costs, 
the number of pre-defined configurations is designed (Fischetti et. al., 2015). 

2. Background  and related work 

Creating pre-defined configurations for packing items has some advantages some of 

which are easy transportation and the minimum number of transferred products, but as 
can be predicted, this limitation can reduce flexibility in the supply chain and in some 

situations it would be possible that customers’ requirements are not satisfied properly 

(Fischetti et. al., 2015). In order to modify Particle swarm optimization efficiency, 
numerous PSO alternatives were prepared in literature. These methods contain (Chen 

et. al., 2013): 1- setting optimal parameters, which can achieve best values in the 

minimum computational effort, 2- constructing innovative neighborhood solution, 3- 

crossing PSO with lower search methods, and 4- using multi-swarm methods. An 
entire analysis on the PSO algorithm was newly proposed by Banks et al. (Banks et. 

al., 2007; Banks et. al., 2008).A lot of procedure is suggested to develop the Particle 

swarm optimization presentation. Mentioned methods can be elaborated as follow: (i) 
learning plans, (ii) multi-swarm arrangements, (iii) neighborhood topologies, (iv) 

combinations with other swarm intellects (SI) procedures, and (v) parameter setting.  

2.1 The first particle swarm algorithm 

In 1995, Eberhart and Kennedy first developed an algorithm for particle swarm 

optimization as an uncertain search method for practical optimization. This algorithm 

is stimulated by the movement of birds looking for food. Numbers of birds in this 

procedure are searching foods in the search space. There is one portion of food in the 
search space. Each solution that called a particle in the algorithm is alike to a bird in 

the bird movement procedure. Consequently, each particle has a fitness value 

calculated by a fitness function. Particles that are near to foods have more fitness 
values. In this algorithm, each particle has its speed too. By continuing to look for 

optimal particles in the search space, the particle continues to near itself to the best 
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values. In this way, the collection of particles at the start of the process is created 

accidentally and by upgrading the generations, they try to find an optimal solution. 

In PSO algorithm there is two best value. First, one is the best fitness value which is 
found so far and is called pbest. The second one that is presented by gbest is the best 

solution which is found by the population. Finally, the speed and location of the 

particle are calculated with the following equations. 

1 2( 1) ( ) * ( )*( ( ) ( )) * ( )*( ( ) ( ))best bestv t v t C rand t p t position t C rand t g t position t     
 

                                                                                                                                      (1)                                                                                                                                                                                              
 

 

( 1) ( ) ( 1)position t position t v t   
                                                                                                                                  (2)                                                                                                      

  

The right side of equation (1) contains three portions: the first portion is the existing 
speed of the particle and the second part and third is the rate of change in the speed of 

the particle and its direction towards the best value. If we do not consider the first part 

in this equation, then the speed of the particles is determined only with respect to the 
current position. Therefore, the effect of its current and randomly speed is eliminated. 

In this means, the best part of the group stops in place and the others transfer towards 

that particle. In fact, group transfer of birds without the first part of Equation (1) will 

be a procedure in which the search space reduces and searches are formed around the 
local solution. 

On the other hand, if the first part of the equation is considered, searching in global 

space can be occurred. The parameter is given by whether or not to set parameters and 
to zero in three different following modes: 

 1- We do not set any of these two parameters to zero, which is an algorithm for 

particles swarm optimization with speed inertia, collective intelligence and nostalgia. 
2- Zero the weight of nostalgia and we only act based on collective intelligence and 

inertia. 

3- Zero the weight of collective intelligence and act only based on nostalgia and 

inertia. 

We initialize it by the equation (3). The initial speed is zero according to equation(4).  

)3()()0( minmaxmin xxrandxx   

)4(0)0( v  

2.1.1 The basic problem of the first particles swarm algorithm 

A fundamental problem with the proposed formula for the initial particles swarm 
algorithm is that it constantly increases and no program is presented to reduce it. If it is 

necessary, we need to slow down as quickly as possible, so that our particle doesn’t 
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pass through the global optimum. To do this, there are a few solutions that we'll cover 

two of them. 

1- Using the maximum cutting speed 

In this method, in order to avoid over-speeding, a maximum speed is defined so even 

the speed exceeded, it can be cut. 
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2- Using the maximum speed of the hyperbolic tangent 

In this method, a hyperbolic tangent function is used to limit the speed to a specific 
value. The difference between this mode and the cutting mode is that in this case, our 

function is differentiable in all directions, while in the cutting case the derivative is 

destroyed. 
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In cutting point of cutting mode, the derivative disappears, but in the hyperbolic 

tangent mode, there is no problem. 

 2.2 Types of Swarm Particle Algorithms 

   2.2.1 Continuous Particle Swarm Algorithm 

Particle swarm optimization algorithm is a population-based algorithm that is 

stimulated birds movement for finding foods and firstly starts with initial solutions and 

gradually try to improve final results. In the particle swarm optimization algorithm, 

particles are flowing in the search space. The particle movement during their process 
finds a new generation according to solutions which are found in previous steps. The 

outcome of the modeling of this behavior is a search procedure that directs population 

toward successful solutions. Particles learn from each other and according to previous 
findings, go to their best solutions. The basis of the work of the particle swarm 

optimization algorithm is based on the attitude that at any specific second, each 

particle sets its position according to the best position ever found to be taken place in it 
and the best place exists in the whole neighborhood. In the following, we will briefly 

explain the concept of collective intelligence. 

2.2.2 Collective Intelligence 

Collective intelligence is a methodical property that the agents collaborate, and the 

collective performance of all particles leads to a convergence at the optimal global 
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answer. The strength of these algorithms is the lack of their need for a global control. 

Each particle in these procedures has an independence that can move across the space 
of the answers and should cooperate with other particles (agents). Two popular 

intelligence procedures are optimization of ants’ nest and particle mass optimization. 

3. Methodology 

    3.1. Steps to perform particle swarm optimization 

Sometimes there are differences in the way the algorithm is separated. In other words, 

the steps are separated in some cases, and in some cases, they combine two or more 

steps together into one step, but this does not cause any problems in the programming, 
because what matters is the execution of the program steps in the order that follows. 

For example, in some references, steps 4 and 5 are combined; therefore, the update 

phase of particle speed and the transfer of particles to new locations considered as a 
stage. This change will not cause a problem in the implementation of the algorithm. In 

the following, we will study 6 steps of PSO: 

Step 1: Random generation of initial particles population 

Random generation of the initial population is simply a random determination of the 
initial site of particles with uniform distribution in the solution space (search space). 

The random generation step of the initial population exists in almost all probabilistic 

optimization algorithms, but in this algorithm, in addition to the initial random location 
of particles, a value is also allocated for the initial speed of particles. The initially 

suggested range for particles speed can be extracted from the following equation (7). 

)7(
22

minmaxmaxmin XX
V

XX 



 

Step 2: Selecting the number of initial particles 

We know that growing the number of initial particles reduces the number of repetitions 

needed to converge the algorithm, but sometimes it is observed that users of 
optimization algorithms assume that this reduction in the number of repetitions means 

reducing the program execution time to achieve convergence, while such an idea is 

completely wrong. However, a growth in the number of initial particles leads to a 
reduction in the number of repetitions, But the growth in the number of particles 

causes the procedure to spend more time in the particle evaluation stage, which 

increases the time of the evaluation so that the algorithm's execution time does not 
decrease until the convergence progresses despite a reduction in the number of 

repetitions. So growing the number of particles cannot be used to reduce the runtime of 

the algorithm.  
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There is another misconception that the number of particles can be reduced to reduce 

the runtime of the algorithm. But to get the algorithm to the optimal answer, the 
number of repetitions increases. (If we consider the convergence condition to be 

unchanged at the expense of the best member in several successive repetitions), which 

ultimately does not reduce the runtime of the program to achieve the optimal response. 

It should also be noted that the reduction in the number of particles may be trapped in 
the local minimum, and the algorithm can’t reach to the minimum. If we consider the 

convergence condition as the number of repetitions, however, reducing the number of 

initial particles, the algorithm will be reduced, but the answer obtained will not be an 
optimal solution to the problem. Because the algorithm is incompletely implemented. 

In summary, the number of primary population is determined by the problem. In 

general, the number of initial particles is a compromise between the parameters 
involved in the problem. Experimentally selecting an initial particles population of 20 

to 30 particles is a good choice, which works well for almost all testing issues. You 

can count the number of particles a bit more than you need to have a little margin of 

safety when facing local minimum. 

Step 3: Evaluating the objective function (cost or expense calculation) of particles 

At this step, we must evaluate each particle, which represents a solution to the problem 
under consideration. Depending on the issue under consideration, the evaluation 

method will be different. For example, if it is possible to define a mathematical 

function for a target, by inserting the input parameters (extracted from the particle 
position vector) in this mathematical function, the cost of this particle will easily be 

calculated. Note that each particle contains comprehensive data about the input 

parameters of the problem, which is extracted from this information and puts in the 

target function. Sometimes it is not possible to define a mathematical function for 
particles evaluation. This occurs when we link the algorithm to another software or use 

the algorithm for experimental data. In these cases, information about the input 

parameters of the software or the test should be extracted from the particle position 
vector and placed on the software linked to the algorithm or placed on the relevant test. 

By executing the software or doing the test, observing and measuring the results, the 

cost of each particle will be determined. 

Step 4: Recording the best location for each particle ( bestiP , ) and the best location 

among all the particles ( bestgP , ) 

At this step, according to the number of repetitions, two states can be verified: 

If we are in the first repetition ( 1t ), consider the present position of each particle as 

the best location found for that particle. 
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In other repetitions, we compare the amount of cost for particles in step 2 with the best 
cost for every single particle. If this cost is less than the best cost recorded for this 

particle, then the location and cost of this particle will replace the previous value. 

Otherwise, there will be no change in the place and cost recorded for this particle, i.e.: 

)9(,...,2,1
)(

))((cos)(cos)(cos))((cos
2

,

,,













 

 di
tXP

tXtPt

notchangeelse

PttXtif
t

ibesti

jbestibestii

Step 5: Updating the speed vector of all the particles 

)10())1(())1(()1()( ,22,11  tXPrandctXPrandctVwtV ibestgibestiii

The coefficients w , 
1c and 

2c are determined experimentally according to the problem. 

But as a general rule, keep in mind that w  must be less than one, because if it is larger 

than one, )(tV  is constantly increasing to the point where it is divergent. Note also, 

however in the theory, the coefficient w , can be negative, but never consider these 

coefficients to be negative in using of this practical algorithm, since the negativity of w 

causes oscillation in )(tV . Selecting a small value for this coefficient )(w also has 

problems. Often, in the particles swarm optimization algorithm, this coefficient is 

positive and ranges from 0.7 to 0.8. The 
1c  and 

2c should also not be too large, since 

the selection of large values for these two factors causes a large deviation of the 

particles from its path. Often, in the particles swarm optimization algorithm, these 

coefficients are positive and range from 1.5 to 1.7. It should be noted that the above 

values are not necessarily the only possible choices for the coefficients w ,
1c ,

2c  but 

according to the problem under consideration, there may be better choices other than 

the above. 

Step 6: Convergence test 
The convergence test in this algorithm is similar to other optimization algorithms. 

There are various methods for examining the algorithm. For example, it is possible to 

determine the exact number of repetitions from the beginning, and at each step, it is 
checked whether the number of repetitions reached the specified value? If the number 

of repetitions is smaller than the initial value, then you must go back to step 2. 

Otherwise, the algorithm ends. Another method that is often used in the convergence 
test of the algorithm is that if, in continued repetitions, for example, 15 or 20 

repetitions, no change in the cost of the best particle is created, then the algorithm 
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ends, otherwise you need to return to step 2. The circular diagram (flowchart) of 

particles swarm optimization algorithm is shown in Figure1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Circulating diagram of particle swarm optimization algorithmFigure

The pseudo code of the particle swarm optimization algorithm is as follow. 

 

 

 

 

 

Random generation of initial particles population 

Objective function evaluation (calculating the cost or fitness of 

particles) 

 
Recording the best position for each particle (𝑃𝑖.𝑏𝑒𝑠𝑡) and best position 

between all the particles (𝑃𝑔.𝑏𝑒𝑠𝑡) 

 

Updating the speed vector of all the particles 

 
Transferring the particles to new positions 

 

 

 

Convergence 

test 

 

 End 
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Algorithm 1. Pseudo code 

1:     For each particle 
2:             Initialize particle 
3:     End For 
4:     Do 
5:     For each particle 
6:            Calculate fitness value of the particle fp 
7:            /*updating particle’s best fitness value so far) */ 

8:            If fp is better than pBest 
9:            set current value as the new pBest 
10:   End For 
11:    /*updating population’s best fitness value so far) */ 
12:   Set gBest to the best fitness value of all particles 
13:   For each particle 
14:          Calculate particle velocity according equation 
15:          Update particle position according equation 
16:   End For While maximum iterations OR minimum error criteria is not attained 

But in the case of the stopping condition, the following ways are available. 

a. Number of determined repetitions. 
b. Reaching a threshold merit. 

c. A number of repetitions that do not change the merit (for example, if after 10 

repetitions the merit was constant and not better). 

d. The last one is based on the aggregate density around the optimal point. In this 
way, if the 80 percent of the particles be in a distance less than 20 percent of most 

distance of the best solution, the algorithm should be stopped. 

e. In the last method𝑅𝑛𝑜𝑟𝑚can be obtained in accordance with equation (11). As 

stated, 𝑅𝑛𝑜𝑟𝑚 is a value between 0 and 1, and also F is the greatest distance 

between two particles in the current state. 

)11()( max

F

R
Rnorm   

 3.2 Mathematical and suggested algorithm 

In this segment, using the data obtained from the problem; we codified the algorithms 
affecting particles swarm and reported it in the form of a table. 

In the research that Fischetti et al. did in 2015 to solve the packaging problem caused 

by mixed-integer linear programming (Fischetti et. al., 2015), they provided the data in 
the table1 and determined the experimental variables. 
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Table 1. Performance of a black box MILP solver on the instances from (Hoskins 

et. al., 2014). Single run for each instance. Times in CPU seconds (time limit of 

3600 s) (Fischetti et. al., 2015) 

The sample variables of this test are: Black58, Red58, Green58, Blue58, BlackBlue10, 
BlackBlue58, AllColor10, AllColor58, and the initial time and limitations of each 

variable, are also calculated in Table1. However, Finally, Fischetti et al. (2015) 

compared the variablesBlackBlue10, BlackBlue58, Allcolor10, and Allcolor58 in 

terms of the value of the target function and the best time by using four heuristic 
methods like fast heuristic, random, most similar, and most dissimilar heuristic as 

shown in the Table2.

Table2.Average performance (out of 100 runs) of our heuristics (Fischetti et. al., 

2015) 

Instance Heuristic Time (s)  time best (s)  Pint Opt 

BlackBlue10 fast heu 1.08  1.08  0.34 100 

 Random 1.44  1.44  0.27 100 

 most dissimilar 1.26  1.26  0.25 100 

 most similar 1.25  1.25  0.29 100 

BlackBlue58 fast heu 4.61  4.61  9.88 100 

 Random 6.40  6.40  10.11 100 

 most dissimilar 2.76  2.76  9.13 100 

Instance Time (s) Primal bound Final gap 

Black58 5.4 58 0.0% 

Red58 5.1 160 0.0% 

Green58 1.0 0 0.0% 

Blue58 6.4 0 0.0% 

BlackBlue10 352.7 10 0.0% 

BlackBlue58 3600.0 583 90.2% 

AllColor10 3600.0 407 98.8% 

AllColor58 3600.0 6981 99.4% 
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 most similar 5.62  5.62  15.42 100 

AllColor10 fast heu 71.82  71.82  3.81 100 

 Random 600.29  304.06  18.63 36 

 most dissimilar 704.33  241.12  19.69 27 

 most similar 626.15  302.40  20.54 26 

AllColor58 fast heu 900.00  332.43  328.20 0 

 Random 874.87  329.59  562.95 2 

 most dissimilar 893.48  323.93  545.47 1 

 most similar 859.86  287.50  404.29 1 

We now consider the method of particles swarm optimization for this study. In this 

segment, we need to implement the execution stepsof the particles swarm optimization 
algorithm for this research. In the first step, which is called the randomized generation 

of the initial particles population, we must code the initialization to create the 

population. Algorithm 2 indicates initialization. 

Algorithm 2. Initialization 

1:      function [InSol]  = initialization (B , S , nPop , K) 

2:      InSol = zeros (B , S , nPop) ; 

3:      for =1: nPop 

4:      k = K ; 

5:      I = zeros (B , S) ; 

6:      SUM = zeros (B ,1) ; 

7:      for I =1:  B 

8:          for j =1: S 

9:                I( I , j) = randi ( [ 0 , k(i) ] ) ; 

10:             k(i) = k(i) - I( i , j) ; 

11:        end 

12:    end 

13:    for i = 1: B 

14:          SUM (i) = sum ( I( i , : )) ; 

15:    end 
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16:    for i=1: B 

17:           if  SUM (i) < K(i) 

18:                    t = K(i) - SUM (i) ; 

19:                    t1= find(I(i,:) = = min ( I( i , : ))) ; 

20:                    I ( i , t1(1) ) = t + I ( i , t1 (1) ) ; 

21:             end 

22:       end 

23:     InSol (: , : , z) = I( : , : ) ; 

24:     end 

25:     end 

In the next step, we need to allocate some value for the initial velocity of particles, 

which we have specified in Algorithm 3. 

Algorithm 3. Speed 

1:      function V=speed(c1, c2, pbest, gbest, InSol) 

2:      V=(c1* rand *(pbest - InSol.fitness) + c2 * rand * (gbest - InSol.fitness)); 

3:      end 

In the step 3, we must evaluate and record each particle representing a solution to the 

problem under consideration, which we have identified in Algorithm 4. 

Algorithm 4. Recording 

1:        function [pbest, gbest]=recording(InSol,nPop) 

2:       pbest=zeros(1, 1, nPop); 

3:        for z=1:nPop 

4:              pbest (z)=InSol.fitness (:, :, z); 

5:       end 

6:              gbest =min(InSol.fitness); 

7:       end 

In the step 4, we need to determine the best location for each particle and the best 

location among all the population, which we have specified in Algorithm 5. 

Algorithm 5. Position 

1:          function [P]=position(alfa, beta, InSol, r, S, nPop) 

2:         O=zeros(1, S, nPop); 

3:         U=zeros(1, S, nPop); 
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4:         SUM=zeros(1, S, nPop); 

5:         for j=1: S 

6:                SUM=sum(InSol.value); 

7:         end 

8:         for z =1: nPop 

9:         for j=1: S 

10:             if SUM( :, j, z)==r(j) 

11:                       continue 

12:            else if SUM(:, j, z) > r(j) 

13:                      O(:, j, z)=SUM(:, j, z) - r(j); 

14:            else 

15:                      U(:, j, z)=r(j) - SUM(:, j, z); 

16:            end 

17:        end 

18:        end 

19:        t1= alfa * U; 

20:        t2= beta * O; 

21:        P =sum( t1+t2); 

22:        end 

In step 5, we need to update the velocity vector of all particles, which we did in 

Algorithm 6. 

Algorithm 6. Updating 

1    function bestsol = updating(InSol, nPop, bestsol) 

2    for z =1: nPop 

3    if InSol . Fitness <bestsol .fitness 

4             bestsol(: , : , z) = InSol(: , : , z); 

5        end 

6    end 
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In the final step, we implement the convergence test and the general scheme of 

particles swarm optimization algorithm shown in Algorithm 7.

Algorithm 7. PSO algorithm 

1:       clc; 

2:       clear; 

3:       %% PSO algorithm 

4:       %% problem parameters 

5:       alfa =1; 

6:       beta =1; 

7:       r =[10, 10, 10]; 

8:       K =[8; 8; 8]; 

9:       S =3; 

10:    B =3; 

11:    %% algorithm parameters 

12:    nPop =100; 

13:    c1=2; 

14:    c2 =2; 

15:    MNI =2000; 

16:    %% algorithm main loop 

17:    bestsol.value = zeros(B, S); 

18:    bestsol.fitness =1000 * ones(1, 1, nPop); 

19:    bestsol.V =zeros (1, 1, nPop); 

20:    bestsolstage =zeros (MNI, 1); 

21:    for m =1: MNI 

22:    % initialize random solution 

23:    InSol.value = zeros(B, S); 

24:    InSol.fitness =zeros (1, 1, nPop); 

25:    InSol.V = zeros(1, 1, nPop); 

26:    InSol.value = initialization(B, S, nPop, K); 

27:    % calculating particles positions(costs) 

28:    InSol.fitness = pisition(alfa, beta, InSol, r, S, nPop); 



 

 

 

 

Particle Swarm Optimization Algorithm  for the Prepack Optimization Problem 

 

303 

 

DOI: 10.24818/18423264/53.2.19.17 
 

 

29:    % recording current and best position for population 

30:    [pbest , gbest]= recording(InSol, nPop); 

31:    % calculating current speed and position for every particles 

32:    InSol.V = speed (c1 ,c2 ,pbest, gbest, InSol); 

33:    InSol.fitness = InSol.fitness + InSol.V; 

34:    %updating best solution which is found so far 

35:    bestsol = updating (InSol, nPop, bestsol); 

36:    %showing algorithm convergence 

37:    MIN = min(bestsol.fitness); 

38:    bestsolstage (m)=MIN; 

39:    End 

40:    plot(bestsolstage) 

In Table 3, the outcomes of the particles swarm optimization algorithm are calculated 

in terms of the value of the target function and runtime in the reference article. 

             Table3.Results of Particle Swarm Optimization Algorithms 

Instance Heuristic Time (s) Time best (s) Opt 

BlackBlue10 PSO 1.68 1.68 100 

BlackBlue58 PSO 5.22 5.22 100 

Allcolor10 PSO 405.33 405.33 20 

Allcolor58 PSO 844 844 1 

4. Result and discussion 

The simulated behavior of birds ‘population, which is known as particle swarm 

optimization (PSO), was proposed in (Eberhart and Shi, 2001). In opposite of other 
population-based evolutionary algorithms, Particle Swarm Optimization researches the 

search space according to 2 key “leaders”: 𝑝𝑏𝑒𝑠𝑡 and𝑔𝑏𝑒𝑠𝑡 , which are the prior best 

postures achieved by the individual particle and the swarm so far, individually. As the 

Particle Swarm Optimization researches algorithm is simplified in conception, 
prosperous to utilize and computationally cheap, it attracts the attention of many 

investigators in recent years. PSO has now been effectively utilized to a varied range 
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of application areas (Agrawal and Bawane, 2015; Gonzalez et. al., 2015;Ishaque et. al., 

2012;Sa-ngawongand Ngamroo, 2015; Wang and Yang, 2013) engineering design(Jin 
and Rahmat-Samii, 2010; Kachroudi et. al., 2012; Yeung et. al., 2012) neural networks 

(Bevrani et. al., 2012; Georgeand Panda, 2012; Silva et. al., 2010; Valdez et. al., 2014; 

Xiong et. al., 2015) and so on.  

However, Particle Swarm Optimization researches has a quick rate of convergence and 

worldwide search ability when searching in the unimodal problem space, it frequently 
gets stuck and snare in local minima when applied to more complex problems such as 

multimodal or shifted and rotated functions (Chen, 2012).In Table4, the results of the 

particles swarm algorithm are compared with the algorithms examined in the reference 

article in terms of the value of the target function and runtime. 

Table4.Results of the algorithm of particle swarm with other methods 

Instance Heuristic Time (s) Time best (t) Opt 

BlackBlue10 Fast-heuristic 1.08 1.08 100 

 
Random 1.44 1.44 100 

 
Most-dissimilar 1.26 1.26 100 

 
Most-similar 1.25 1.25 100 

 
PSO 1.68 1.68 100 

BlackBlue58 Fast-heuristic 4.61 4.61 100 

 
Random 6.4 6.4 100 

 
Most-dissimilar 2.76 2.76 100 

 
Most-similar 5.62 5.62 100 

 
PSO 5.22 5.22 100 

Allcolor10 Fast-heuristic 71.82 71.82 100 

 
Random 600.29 600.29 36 

 
Most-dissimilar 704.33 704.33 27 

 
Most-similar 626.15 626.15 26 

 
PSO 405.33 405.33 20 



 

 

 

 

Particle Swarm Optimization Algorithm  for the Prepack Optimization Problem 

 

305 

 

DOI: 10.24818/18423264/53.2.19.17 
 

 

Allcolor58 Fast-heuristic 900 900 0 

 
Random 874.87 874.87 2 

 
Most-dissimilar 893.48 893.48 1 

 
Most-similar 859.86 859.86 1 

 
PSO 844 844 1 

Regarding the comparisons made in Table 4, it was observed that the method of 

particles swarm optimization algorithm obtained better results than other four heuristic 
methods in some variables. For example, in the Allcolor58 section, using particles 

swarm optimization, the optimal time was 844 seconds, which is better than the other 

four methods. Alternatively, in the Allcolor10 section, using particles swarm 

optimization, the optimum time was 405.33, which is better than the other four 
methods, and also by using particles swarm optimization method, obtained optimum 

20 and was recognized as the best answer. So it can be concluded that the method of 

particles swarm optimization is one of the most suitable and practicable methods for 
minimization. 

             5. Conclusion 

In this paper, the method of particles swarm optimization algorithm was compared 
with Fast Heuristic, Random, Most-dissimilar and Most-similar methods to solve the 

packaging problem caused by inventory allocations. As shown in Table 4, in the 

Allcolor58 section, the best optimum time was obtained using particle swarm method 

and its time was estimated to be 844 seconds, which was found to be significantly 
lower than other methods, and the optimal value was obtained using the Fast Heuristic 

Method and its value was estimated to be 0. In Allcolor10, the best optimum time was 

obtained using particles swarm method, and its time was estimated to be 405.33 
seconds, which was significantly reduced compared to other methods, and the optimal 

value was obtained by using the particles swarm method and its value was estimated to 

be 20. 
Considering the findings of this paper and also because the particles swarm 

optimization algorithm is one of the most successful optimization algorithms due to its 

simplicity and efficiency, the work of this research can be extended from other aspects. 

Among other things, research and comparison of other parameters, such as the inertial 
coefficient, acceleration coefficients, etc., can be obtained for the best possible 

solution for the desired problem. 

It can be concluded that the method of optimizing particles swarm is a useful method 
for minimization problems. 
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